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The conditions for the existence of special solutions, for which the components of the angular momentum vector are the 
superposition of linear and linear-fractional functions are considered for Kirchhoff's differential equations, which describe the 
motion of a gyrostat under potential and gyroscopic forces. © 2005 Elsevier Ltd. All rights reserved. 

A noteworthy feature of Kirchhoff class equations [1] is the fact that, by a non-degenerate linear 
transformation of the main variables of the problem, they can be converted into the equations of motion 
of a charged and magnetized gyrostat in Newtonian, electric and magnetic fields. This is a hydrodynamic 
analogy for special cases, pointed out by Steklov [2] and Kharlamov [3] and obtained in completed form 
in [4, 5]. There are many approaches [6-9] to the investigation of the properties of integral manifolds 
of Kirchhoff's equations. In view of the non-integrability of these equations in quadratures [7], an 
approach based on constructing special solutions using the method of invariant relations [10] is important. 

In this paper we construct a new solution of these equations for the case when the characteristic matrices 
occurring on the right-hand side of Kirchhoff's equations are diagonal, while the vectors of the 
generalized centre of mass and of the gyrostatic moment are directed along the principal axis. It possesses 
a new structure of the auxiliary invariant relations, which give the components of the angular momentum 
vector in terms of the components of the unit vector of the axis of symmetry of the Newtonian, electric 
and magnetic fields. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  F O R M  O F  T H E  S O L U T I O N  

Consider the problem of the motion of a gyrostat with a fixed point under potential and gyroscopic 
forces, which is described by Kirchhoff class equations [4, 5, 9] 

= ( x + k ) x a x + a x x B v + s x v + v x C v  (1.1) 

= v x ax (1.2) 

where x = (xl, x2, x3) is the angular momentum vector of the gyrostat, v = (vl, v2, ~'3) is the unit vector 
of the axis of symmetry of the force field, k = (hi, h2, h3) is the gyrostatic moment, characterizing the 
motion of supported bodies, s = (Sa, s2, s3) is a vector, codirectional with the vector of the generalized 
centre of mass of the gyrostat, a = (aij) is the gyration tensor of the gyrostat, constructed at a fixed 
point, and B = (Bij), C = (C/j) are third-order constant symmetrical matrices; the dot above the variables 
x and v denotes a derivative with respect to time t. 

tPrikl. Mat. Mekh. Vol. 68, No. 6, pp. 964-970, 2004. 
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Equat ions (1.1) and (1.2) have the following first integrals 

x . a x - 2 ( s - v ) + ( C v - v )  = 2E, 

1 (x+k)-v-~(Bv.v)=k 

V . V =  1 
(1.3) 

Here  E and k are arbitrary constants. 
Suppose the matrices a, B and C have a diagonal structure with elements ai, and B i and Ci 

(i = 1, 2, 3), while the vectors s and k are directed along the first principal axis of the gyration ellipsoid: 
S = (S1, 0, 0) ,  ~k = ()kl, 0, 0).  

We will investigate the solutions of Eqs (1.1) and (1.2), which are characterized by three invariant 
relations [11, 12] 

X 1 = (Pl(VI),  X 2 = V2IP2(VI), X 3 ---- V3lP3(V1) (1.4) 

Then,  using the geometrical  integral f rom (1.3), the vector equations (1.1) and (1.2) can be converted 
to the following five equations 

2attpl(vl) - a3v lq03(V 1) 
~ '(v1) = a3tP3(v1 ) -a2tP2(v 1) 

(1.5) 

I 

(a3lP3 (V l) - a2~P2(v I ))(Pl (V1) = 

= ( a  3 -a2) lP2(V1)Q3(V1)  + a2B3lP2(v  1) - a 3 B 2 q o 3 ( v  1) + C 3 - C 2 
(1.6) 

) 

II/(V 1 )(a3lP3(V 1 ) - a2tP2(Vl))tP2(V1 ) = 

= ~02(VI)(a3VIQ3(V1) - a l t P l ( V I ) )  + (a 1 - a 3 ) t P I ( V I ) t P 3 ( V  l )  - 

- a3~,l ~03(VI ) + a 3 B I V 1 Q 3 ( v  1) - a l B 3 ~ l ( V l )  - s  1 q- ( C  1 - C 3 ) v  I 

(1.7) 

) 

( 1 - V21 - Ill(vl))(a3fP3(vl) - a2~2(v1))~3(Vl) = 

= q ) 3 ( V l ) ( a l q ) l ( V l ) -  a2VI~2 (V1) )  + (a 2 - a l ) Q I ( V I ) ~ 2 ( V 1 )  + 

+ a 2 ~ l Q 2 ( V l )  - a 2 B I V I t P 2 ( V 1 )  + a l B 2 Q I ( v I )  + s I + ( C  2 -  C 1 ) v  1 

(1.8) 

/ 2 
91 = (a3tP3(Vl) - a2tP2(Vl))~/ll/(Vl)(1 - V 1 -- II/(V 1)) (1.9) 

where ll/(V1) = V2(V1); the prime denotes a derivative with respect to the auxiliary variable vv 
If  a certain solution ~ = ~(vl) ,  9i(vl) (i = 1, 2, 3) of Eqs (1.5)-(1.8) is obtained, we can determine 

the relation Vl = vl(t) f rom Eqs (1.9). The components  of the angular momen tum vector are then 
obtained from relations (1.4), where 

V2(Vl)  ~ - - V ~ I  ), V3(V1) J l  2 2 ---- = - -Vl  - -~ /  (V l )  (1.10) 

The integrals of the energy and the angular momen tum from system (1.3) based on invariant relations 
(1.4) are as follows: 

2 1 2_ 
VI~01(VI) ~/(VI ) ~ 2 ( V l )  + ( 1 - v  1 - ¥ ( v l ) ) % ( v l )  = ~ ( b o ~ + n  o+n~v I +n2v i) + 

2 2 2 2 2 
a){pl(v l) + a2~/(Vl)q)2(v 1) + a3(1 - v 1 - ~I/(Vl))~3(Vl) = CoV + m o + mlv  I + rn2v I 

(1.11) 

where 

b o = B 2 - B  3, n I = -2£1,  n 2 = B I - B  3 

c o = C 3 -  C2, ml = 2s 1, m2 = C 3 -  C 1 

and no and mo are arbitrary constants, introduced instead of E and k. 

(1,12) 
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When investigating the conditions for the existence of invariant relations (1.4) for Eqs (1.1) and (1.2) 
with integrals (1.11), we considered the case [12] when the functions ~(vl) and q~i(vl) in Eqs (1.5)-(1.9) 
are polynomials in the variable vl. Hence, it is of interest to investigate the solutions of Eqs (1.5)-(1.9) 
in a more general form. 

We will specify the solution of Eqs (1.5)-(1.9) using the following in invariant relations 

/[/(V1) = O~2V~+O~IV 1 +0~ 0 

(P2(VI) = a/0+V171+£0' q03(Vl) = a31(g0+a2q02(V1)) 
(1.13) 

where o~2, 1~1, ~0, ~/0, ~tl, g0 are constants, which depend on the parameters of problem (1.1), (1.2), to 
be determined. The basis of this approach is not only the more complex structure of the solution 
compared with that employed previously in [12], but also the fact that, when the third equality of (1.13) 
is satisfied, Eq. (1.9) takes the form 

= } 112 
~'1 {(O~2V~ + R1V 1 + 0~0)[- (1 + ~2)V~-0~IV1 +(1- -Ct0)  ] (1.14) 

i.e. vl = Vl(t) is an elliptic function of time. The latter property is characteristic for the majority of 
special solutions of the equations of rigid-body dynamics [6]. 

Note that, on the basis of relations (1.13), the function %(Vl) can be obtained from Eq. (1.5) 

~I(V1)  = ~--al[g0(2(o~2 + 1)v 1 + a 1) + 2a2viq02(Vl)] (1.15) 

Equations (1.11), (1.12) give the values of the constants of the first integrals in the solution considered. 

2. THE C O N D I T I O N S  FOR S O L U T I O N  (1 .13 ) - (1 .15 )  TO EXIST 

Using expressions (1.13) and (1.15), Eqs (1.6)-(1.18) can be written as follows (u = vl + e0 is a new 
variable): 

2 
g0a3q)'l (u) + a2(a2 -a3) iP2(u)  - x0iP2(u) + ~0 = 0 (2.1) 

I 

2goa l  a3 ~It( u )tP2( u ) = 

2 2 
= 2az(a I - a3)(u - l~o){P2(u ) + (GlU + Go)lP2(u) + DlU + D O 

(2.2) 

2goala2( 1 - (u - eo) 2 - Ilt(u))tp'2(u ) = 

2 
= 2aea3(a  2 - a l ) ( u  - 13o)lP2(u ) + (K~u + Ko)lP2(u ) + M l u  + M o 

(2.3) 

where 

2 ~(u)  = tx2u 2 
+ (ct 1 - 2ZoCt2)u + (0% - eoR1 + eotX2) 

-1 
(P2(u) ---- 70 +Y1 u 

x o = go(a3 - a 2 )  + a2a3(B 3 - B2), tSo = a3(goB 2 + C 2 - C3) 

G 1 = 2[goR2(ala 2 - a l a  3 - aza3) + 2goa2(a l - a3) + a l a z a 3 ( B  1 - B3) ] 

G o = 21.toeoCt2(- a l a  2 + a l a  3 + a2a 3) - 4g0eoa2(a I - a3) + 

+ goaq (ala2 - a l a  3 - a z a 3 )  - 2~qa laza  3 - 2eoa laza3(B  1 - B3) 

2 
D 1 = 2 [ g o ( a  r - a 3 ) ( ~  2 + 1) + ~oa la3 (B1  - B 3 )  - g o a l a 3 B 3 o ~  2 + a l a 3 ( C 1  - C3)] (2.4) 
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Do = ~tg(al - a 3 ) [ ~ l  - 2Eo(1 + ~2)] - 2 ~ o ~ ' l a l a 3  - ~toala3B3(o~z - 213oOt2) - 

- 2 ~ . o a l a 3 ( C  1 - C3) - 2 s l a l a  3 - 2~o~3oala3(B 1 - B3) 

K I  = 2[~to(a~a2- a~a 3 + a~a3)( % + 1) + a ~ a 2 a 3 ( B  2 - B~)] 

Ko = ~to(a~a2 - a~a3 + a 2 a 3 ) [ ~  - 2Co(0~ 2 + 1)] + 2~qa~a2a  3 - 2 e o a ~ a 2 a 3 ( B  2 - B~) 

M~ = 2~toa~(~t 0 + a3B2)(o~ 2 + I )  + 2 a l a 3 ( C  ~ - C~) 

M 0 = ~ o a j ( ~ t  o + a 3 B 2 ) [ ~  1 - 2 e o ( ~  2 + 1)] + 2 s l a j a  3 - 2 % a l a 3 ( C  z -  C~)  

where,  by vir tue of  expression (1.15), q~l(u) has the  fo rm 

q0 l ( u )  = ~al{~t0(0~ 1 - 2ao((~ 2 + 1))  + 2(T 1 - %] ,0 )a2  + 

+ 2(I.t0(0~2 + 1) + Yoa2)u - 2EO~/la2u -1 ] 

(z.5) 

By requir ing tha t  the funct ions qo2(u ) = qt o + ~fiu -1 and % ( u )  f rom relat ion (2.5) should satisfy 
Eqs  (2.1)-(2.3),  we obta in  the following conditions,  connect ing  the p a r a m e t e r s  of  the solut ion and the 
p a r a m e t e r s  of  p r o b l e m  (1.1), (1.2) 

2 

2 al x° - ~°E°a3 (2.6) 
% = ( a  1 , a 2 ) ( a l  _a3  ), ~0 = 2 a 2 ( a 2 _ a 3 ) ,  71 a l ( a  3_a2 )  

E0 2 2 2 
[eoal (a  3 - a2)o~ z - a l ( a  3 - a2)o q - Coaz(a 1 - a3) ] O~0 - -  2 

a l ( a 2 - a 3 )  
(2.7) 

2 
7 2 a l a 2 ( a 2  - a  3) + 70(~toa2a3 - a l x o )  + laoa3(R2 + 1) + Ooa 1 = 0 (2.8) 

2 2 
21-toala3(~l - 2~00~2) - 4~o~t0a2(a I - a 3) + 271a2(a 1 - a3) + G O = 0 (2.9) 

2 2 
2 7 0 a 2 ( a  I - a 3 )  + 70G1 + D l = 0 (2.10) 

2 2 2 
2tloYlala30~2 - 2eo•oa2(al - a3) + 4] '07ta2(al  - a 3) + ~/oGo + ]riG 1 + D O = 0 (2.11) 

21.toalaz[2%(ot 2 + 1) - o~1] - 4Eo~ l oa2a3 (a  z - a l )  + 2 " , [ l a 2 a 3 ( a 2 - a l )  + K o = 0 (2.12) 

2 
2"~oa2a3(a 2 - a 1) + ~/oK1 + M l = 0 (2.13) 

21.to~t~ala2(~2 + 1) 2 + 2~3oqtoa2a3(a2 - al)  - 4"Yo'Yta2a3(a2 - a 1) - ~/oKo - "flK1 - M o = 0 (2.14) 

Rela t ions  (2.6) and  (2.7) show that  the p a r a m e t e r  co in t h e m  is expressed in te rms  of the c o m p o n e n t s  
of  the gyrat ion tensor,  the pa r ame te r s  "¢0 and ~'1 are expressed in te rms of  the componen t s  of  the gyration 
tensor  and the  quanti t ies  B2, Bs and g0, and the p a r a m e t e r  a0 is expressed in te rms  of  the  c o m p o n e n t s  
of  the gyrat ion tensor  and the  quant i t ies  a l  and a2. It  can be  shown f rom relat ion (2.4) that  system of  
equat ions  (2.8)-(2.14) is l inearly dependen t  and reduces  to the system 

~l,o(a 2 - a 3 ) [ O ~ 2 ( a l a  2 + a l a  3 - 2 a 2 a 3 )  - a 2 ( a  3 - a i )  ] + 

+ a a a 3 [ a l ( a  3 - a 2 ) ( B  1 - B 3) + a 2 ( a  3 - a l ) ( B  3 -  B2) ]  = 0 
(2.15) 

~o  
)~1 = 2 [ a l ( a 3 - a 2 ) ( a l a 2  + a l a 3 - a 2 a 3 ) R 1 -  

2 a l a 2 a 3 ( a 3  - a2) 

- 2 C o a 2 a 3 ( a l ( a  3 - a2)o~ 2 + a2(a  3 - a l )  ) ] 

(2.16) 
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~t~(a 2 - a 3 ) ( - a l a 2  + a l a  3 + 2 a 2 a  3 + 4a2a3~ 2) + 

+ 2 ~ t o a 2 a 3 [ B 3 ( a l a  2 - a l a  3 + a2a 3) - B2(- a l a  2 + a l a  3 + a2a3)] - 
2 2 

- a l a 2 a 3 (  B 3 - B 2 )  z + 4 a l a 2 a 3 ( a  2 -  a3)(C 2 - C3) = 0 

(2.17) 

x 2 a 2 ( a l  - a3)  + 2 X o [ ~ t o ( a l a  2 - a l a  3 - a2a3)0~2 + 2].toa2(a 1 - a3) + 

2 
+ a l a 2 a 3 ( B  1 - B3)] + 4a2(a 2 - a3)[~o(a 1 - a3)(~ 2 + 1) + 

+ ] . t oa l a3 (B  1 - B3) - 110ala3B30~2 + a l a 3 ( C  1 - C3) ] = 0 

(2.18) 

2 2 2 
2~toYlata3~ 2 - 2eoToa2(a 1 - a3) + 4YoYla2(a 1 - a3) + 

2 
+ ]t0G 0 + ] t lG 1 + ~ o ( a l  - a3)[(~ I - 2e0(o~ 2 + 1)] - 

- 2~to)~lala 3 - I . toala3B3(O~l  - 2~0cX2) - 2 E o a l a 3 ( C  l - C3) - 

- 2 ~ o E o a l a 3 ( B  1 - B3) - 2 S l a l a  3 = 0 

(2.19) 

Hence, Eqs (2.6), (2.7) and (2.15)-(2.19) serve as the conditions for solution (1.13)-(1.15) for Kirchhoff's 
equations (1.1) and (1.2) to exist. 

If we use the fact that, by their mechanical meaning, the quantities X1, sl, C2 - C3 and C1 - C3 can 
take arbitrary values, then, to prove the solvability of Eqs (2.6), (2.7) and (2.15)-(2.19) we can use the 
semi-inverse method, which enables us to avoid lengthy calculations. Suppose we are given the values 
of the parameters al, a2, a3, B1, B2, B3, ~2 and ~a. Then, from Eq. (2.15) we can determine the parameter 
~t0, and, from Eqs (2.6), the values of the parameters of the solution: %, 70 and 71. From the results 
obtained from Eq. (2.7) we can find the parameter C~o, from Eq. (2.16) we can find the parameter )~1, 
from Eq. (2.17) we can find the parameter C2 - C3,  from Eq. (2.18) we can find the parameter C1 - C3, 
and from Eq. (2.19) we can find the parameter Sl,  since these parameters occur linearly in conditions 
(2.15)-(2.19). It is necessary to take into account here that the values of s0, ~1 and ~2 obtained must 
satisfy the conditions for the solution to be real 

v~(v~) = V(v,) = a2v~+alv l  +%_>0 
2 

v~(vj) = - ( 1  + a 2 ) v  ~-~x~v~ + ( 1 - a o ) _ > 0  
(2.20) 

This can be achieved, for example, by choosing the quantities al  and o~2, assuming that the right-hand 
2 2 side Eq. (2.7) is positive and does not exceed unity. The functions Vz(Vl) and v3(vl) at the point 

vl = 0 are then positive, and, in view of their continuity, a non-empty interval in Vl exists, in which 
conditions (2.20) are satisfied. 

Hence, when Eqs (2.6) and (2.7) are satisfied, Eqs (1.1), (1.2) allows of the solution (it is found using 
formulae (1.4), (1.10) and (1.13)-(1.15)) 

2 2 v2(vl) = ~c~2vl +air1 +%, v3(vl) = qt-( l  + a2)vz-cqvl +(1 - % )  

'I Xl(Vl) = ~ 1  ~00~1 + 2(g0(@2 + 1) + Y0az)Vl + 2Yla2Vl] 
v 1 +~0.l 

( ]11 ~, Vg(V1)f ] t la 2 
X2(VI) = V2(V1) " /0- I -VI+E0j  X3(V1) = a3 ~ [ ' t ° + Y ° a 2 + v ; + E o  ) 

~'1 = Vz(V1)V3(VI) 

(2.21) 

The noteworthy property of solution (2.21) is the structure of the functions xi(vl): they are the 
superposition of linear and linear-fractional functions of the components of the vector of the axis of 
symmetry of the force field. Since the constants no  and m0, occurring in relation (1.11), take fixed values, 
which we will not write here in view of their complexity, the solution (2.21) depends on one arbitrary 
constant to. This constant arises when solving the last equation of system (2.21). 
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3. N U M E R I C A L  E X A M P L E  

We will specify the following values of the components of the gyration tensor: al = 2a, a 2 =__3a, 
a 3 = 5 a ,  where a is a parameter. From the first equation of system (2.6) we then obtain e0 = 2~/3/3. 
Assuming the parameter ~t0 to be free, the following quantities satisfy Eq. (2.15) 

BI = 31"to, B2 = }-to,_ B3 _ 8~o 
a a 5a 

Equation (2.7) is satisfied, for example, under the following conditions 

21 25.,~ 
R2 = "~ '  (/'1 -- 4 ' OC0 = 1 

From the notation for x0, from (2.4) we have x0 = 11~t0a. 
We obtain the value of ~,1 from (2.16), and the values of 70 and 3'1 from the second and third equations 

of system (2.6), we have 

1154r3~to ll~t o 5,J'3 ~t 0 
~'1 = 48a ' Y0 = 12a '  Y1- 6a 

We return to Eqs (2.17)-(2.19). Substituting the values of the parameters obtained above into these, 
we obtain 

21Ix 2 191~o 2 5,f3B 2 
C I - C  3 = ~ C 2 - C  1 --_ s 1 - 

5a 3 ' 24a 3 ' 2a 3 

Hence, we have given an example of the solvability of conditions (2.6), (2.7) and (2.15)-(2.19). Solution 
(2.21) takes the form 

1 / (o) (o) 5 
v2(vl) = .~421(Vl-Vl )(Vl-V2 ), V3(V 1) = ~.,,/-Vl(V l +,,/5) 

(C0) 1 96, V~ °) V l = - -  • =- -0 .09)  

l-tof45,f3 7 5 ~  ] 
XI = - a - ~ - ' g 6  + a VI -- 2(,4/3VI + 2 ) )  

X2 = ' o V 2 ( V , ) (  I I  5 ) 

a - ]2 + 2(dr~vl + 2) ' 

~'l = V2(V1)V3(VI) 

~oV3(VI)( 7 1 5 )  
x3= 5a - 4  +2(,J3v~ + 2) 

The variable vl varies in the range iv(°), 0]. t 2 
An analysis of the literature devoted to constructing general and special solutions of Kirchhoff's 

equations shows that solution (2.21), according to the conditions imposed on the parameters, cannot 
be a special case of the solutions of the Kirchhoff-Kharlamov [3], Clebsch [13], Steklov [2] and 
Lyapunov [14] solutions, while in structure it does not satisfy the well-known special solutions [3, 6, 8, 
11, 12, 15, 16]. 

Note that when Bi = 0, Ci = 0 and ~1 = 0, conditions (2.15)-(2.19) reduce the equality a2 = a3, which 
cannot be satisfied by virtue of conditions (2.6). Hence, there is no analogue of solution (2.21) in the 
classical problem. 

I wish to thank G. V. Gorr for suggesting the problem. 
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